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Influence of uniaxial stress on the lamellar spacing of eutectics
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Directional solidification of lamellar eutectic structures submitted to uniaxial stress is investigated. In the
spirit of an approximation first used by Jackson and Hunt, we calculate the stress tensor for a two-dimensional
crystal with triangular surface, using a Fourier expansion of the Airy function. The effect of the resulting
change in chemical potential is introduced into the standard model for directional solidification. This calcula-
tion is motivated by an observation, made recently@I. Cantat, K. Kassner, C. Misbah, and H. Mu¨ller-
Krumbhaar, Phys. Rev. E58, 6027 ~1998!#, that the thermal gradient produces similar effects as a strong
gravitational field in the case of dilute-alloy solidification. Therefore, the coupling between the Grinfeld and
the Mullins-Sekerka instabilities becomes strong, as the critical wavelength of the former instability gets
reduced to a value close to that of the latter. Analogously, in the case of eutectics, the characteristic length
scale of the Grinfeld instability should be reduced to a size not extremely far from typical lamellar spacings.
Following Jackson and Hunt, we assume the selected wavelength to be determined by the minimum under-
cooling criterion and compute its shift due to the external stress. In addition, we find that in general the volume
fraction of the two solid phases is changed by uniaxial stress. Implications for experiments on eutectics are
discussed.@S1063-651X~99!02004-8#

PACS number~s!: 81.10.Aj, 05.70.Ln, 81.40.Jj, 81.30.Fb
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I. INTRODUCTION

A nonhydrostatically strained solid in contact with i
melt or vapor can partially relieve its elastic energy by p
ducing an undulated interface. This is the cause of a morp
logical instability giving rise to the evolution of grooves wit
a definite spacing under uniaxial stress and, possibly, is
formation, if the stress is biaxial. The instability was fir
predicted by Asaro and Tiller@1#. Experimentally, it has
been observed and studied by Torii and Balibar@2#. Since the
independent rediscovery of the instability by Grinfeld@3#, it
has often been referred to as the Grinfeld or Asaro-Till
Grinfeld instability ~ATG!. Important contributions leading
to a broad interest in the instability are due to Nozie`res@4,5#.

In directional solidification~Fig. 1!, it is known that the
moving front undergoes, depending on the growth veloc
another morphological instability, named after Mullins a
Sekerka~MS! @6#, where the interface develops a cellul
structure. Durandet al. @7# and Cantatet al. @8# investigated
the coupling between these two instabilities for dilute allo
They discovered that under favorable circumstances a w
uniaxial stress of the order of 1 bar leads to a dram
change in the stability range of the Mullins-Sekerka insta
ity. A schematic representation of one of the most comm
liquid-solid equilibrium phase diagrams is displayed in F
2. A dilute alloy means that the concentration of the min
phase is very small. The other situation, in which we
interested here, corresponds to a composition close to
eutectic one. The growing solid then often forms a para
array of the two coexisting phasesa andb that grow side by
side. This growth mode is called lamellar eutectic growth

A seminal theoretical desription of lamellar eutectics h
been given by Jackson and Hunt~JH! @9#. Their basic idea is
the replacement of the diffusion field in the liquid phase w
PRE 591063-651X/99/59~4!/4298~7!/$15.00
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that of a planar front. Assuming that thea and b lamellas
have equal average undercoolings they were able to ob
an analytic approximation for the average undercooling
the interface. They then invoked the hypothesis, which
since become known asminimum undercooling assumption,
that theselectedwavelength of the pattern leads to the min
mum possible value of the undercooling~which means that
for given undercooling thefastest-growingstructure is se-
lected!.

II. MODEL EQUATIONS

In describing the problem by a macroscopic continuu
model we must introduce fields. These are the temperat
the concentrations, and the stress fields. We make some
dard simplifying assumptions about the properties of
sytem, believed not to affect its essential physical featu
These simplifications were justified elsewhere@10#. For the
sake of completeness, we recapitulate them briefly. The t

FIG. 1. Schematic setup of a directional solidification expe
ment. A container with the melt in it is pushed through a therm
gradientG with a velocityV.
4298 ©1999 The American Physical Society
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mal gradientG is assumed constant in the frame of referen
moving along with the growing interface. This means th
thermal diffusion is much faster than chemical diffusion, th
thermal conductivities of all phases are equal, and that la
heat production can be neglected. Thanks to this approxi
tion, the motion of the temperature field is completely dec
pled from that of the concentration field. Temperature
given by position, which effectively reduces the number
fields to be considered by 1. We further suppose the atta
ment kinetics at the solid-liquid interface to be fast on t
time scales of all other transport processes. This assump
is legitimate for microscopically rough interfaces. We ta
surface tension to be isotropic. In the vicinity of the ope
ting point in the phase diagram, the slopes of the liquid
and the solidus line are assumed constant. This lead
temperature-independent partition coefficients for b
phasesa andb. The partition coefficientska/b are the ratios
of the slopes of the liquidus and solidus lines, respectiv
In addition, we restrict ourselves to the so-called one-si
model; i.e., we have no diffusion in the solid phases.

Introducing a dimensionless concentration fieldc5( c̃
2 c̃e)/D c̃, wherec̃ stands for the physical concentration a
D c̃5 c̃b2 c̃a is the miscibility gap, we can write the equatio
of motion in the laboratory frame~where the sample is
pushed at constant velocityV along the2z direction!

¹2c1
2

l

]c

]z
50. ~1!

In this equation,l 52D/V is the diffusion length, whereD is
the diffusion constant. One boundary condition for the dif
sion equation takes into account that the concentration
away from the surface has a constant valuec`5( c̃`

2 c̃e)/D c̃. In the lateral direction, we assume period
boundary conditionsc(x,z)5c(x1l,z). Mass conservation

FIG. 2. Generic phase diagram of a binary eutectic.T is the
temperature,c the concentration of one component. The regionsL,
a, andb correspond to one-phase equilibrium states of the liqu
the solida, and the solidb phases, respectively.L1a andL1b
are regions of two-phase equilibrium between the liquid and
solid phases; the actual concentrations of the two phases are
by the liquidus and solidus lines~solid lines! delimiting these re-
gions.ce , ca , andcb denote the equilibrium concentrations of th
liquid and the two solid phases at the triple or eutectic point. T
concentrations for the undercooled case are also displayed.
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requires boundary conditions for the normal derivatives
the concentration fields at the liquid-solid interface. Th
continuity equation reads

D
]c

]n U
interface

5H @~12ka!c1d#vn

@~12kb!c1d21#vn ,
~2!

whered5( c̃e2 c̃a)/D c̃ is the reduced miscibility gap of the
a phase and 12d that of the b phase. vn5@2D/ l
1 ż(x)#nz is the normal velocity of the interface where th
normal points from the solid into the liquid.

For the stress field we impose mechanical equilibriu
( j]s i j /]xj50, which means that on the time scale of t
concentration field, the stress is always relaxed. We ass
linear elasticity and an isotropic solid, so that Hooke’s la
reads

s i j 5
Ea/b

11na/b
S ui j 1

na/b

122na/b
ukkd i j D , ~3!

where s i j are the components of the stress tensor andui j
5 1

2 (]ui /]xj1]uj /]xi) those of the strain tensor (ui is the
displacement vector!. Ea(Eb) is Young’s modulus for the
a(b) phase,na(nb) the Poisson number.

The boundary conditions at the solid-liquid interface a

snn5nsn52pl ,

snt5nst50, ~4!

wheren ~t! is the normal~tangential! vector at the interface
and pl is the pressure in the liquid. These conditions st
that we have no shear at the solid-liquid boundary and
the normal component of the stress tensor is continuo
That is, we neglect the capillary overpressure present w
the interface is curved. Usually, this is a good approxim
tion.

There are two further points that have to be taken i
account. Both result from the requirement of local therm
dynamic equilibrium at the interface, due to fast interfa
kinetics. The first of these is often referred to as the ‘‘m
chanical’’ equilibrium condition for the surface tensions
the three interfaces meeting at a triple point~although it is
indeed a condition of thermodynamic equilibrium under p
ticle exchange, i.e., one of chemical equilibrium!. The con-
tact anglesqa/b ~see Fig. 3! should obey

ga lsinqa1gb lsinqb5gab ,

ga lcosqa2gb lcosqb50, ~5!

,

e
en

e

FIG. 3. Illustration of a lamellar eutectic. The interface positi
is z5z(x). The pinning anglesqa/b are also shown.
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whereg i j is the surface tension between the phasesi and j
~and l designates the liquid phase!. The second condition
couples the stress to the concentration field. It is a modi
Gibbs-Thomson equation

ea/bcu interface5
z

l T
a/b1d0

a/bk1Ha/b
~s tt2snn!

2

s0
2

~ea521, eb51!. ~6!

In this equation,z is the z coordinate of the liquid-solid
interface andk its curvature, taken to be positive where t
solid is convex.l T

a/b are the thermal lengths, given byl T
a/b

5ma/bD c̃/G, where ma(mb) is the absolute value of th
slope of the liquidus line describing coexistence of ph
a(b) and the liquid.d0

i 5g i l Te/LimiDc are the capillary
lengths (i 5a,b), whereLi is the latent heat per unit volum
andTe the eutectic temperature. The modification is the
clusion of the stress term with

Hi5
Te~12n i

2!s0
2

2Ei umi uDcLi
, i 5a,b. ~7!

Herein,s0 is the uniaxial prestress that can be controlled
experiments. A detailed derivation of Eq.~6! is given in@8#.

III. JACKSON-HUNT THEORY FOR A FLAT INTERFACE

The first level of approximation in Jackson and Hun
approach consisted in replacing the actual diffusion field
Eq. ~6! with that of a planar lamellar structure sitting at th
average position of the solidification front. Without the stre
term, Eq.~6! would then become a pair of second-order d
ferential equations with boundary conditions following fro
Eq. ~5!. The solution of these equations with the supplem
tary condition that the two solutions match at the triple po
gives the interface shape and the volume fractionh of thea
phase. Since these equations are nonlinear, they canno
ily be solved analytically. Hence Jackson and Hunt invok
the condition of equal average undercooling of the two so
liquid interfaces, which fixes the free parameterh and allows
one to obtain an analytic relation between the average un
cooling and the wavelength. The second step—solution
the interface shape—can then be done numerically, if
sired.

The main modification in our case is that we have
additional term in Eq.~6! involving the stress distribution a
the interface. In the spirit of Jackson and Hunt, we comp
this expression for a flat interface first. Then the probl
becomes very similar to JH’s original approach with the d
fusion field replaced bycu i2ea/bHa/b(s tt2snn)

2/s0
2 .

Averaging the diffusion field obtained by solving the vo
Neumann problem~1!, ~2! for a flat interface, we have

^c&a5
1

k
~c`1d1h21!1

2l

h l
P~h!, ~8!

^c&b5
1

k
~c`1d1h21!2

2l

~12h!l
P~h!, ~9!

where
d
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P~h!5 (
n51

`
sin2~nph!

~np!3
~10!

and the segregation coefficientk has been taken equal in th
two phases. The averages of the curvature of thea and b
lamellas can be obtained without approximation, as they
involve the integration of a derivative,

^k&a5
2

hl
sinqa , ~11!

^k&b5
2

~12h!l
sinqb . ~12!

To average the stress terms, we must, in principle, so
the elastic problem for a flat lamellar structure. Innocent
this problem may look, it is not all that trivial. Nevertheles
the final averaging procedure will turn out to be independ
of the subtleties that we will now discuss briefly.

At each lamella boundary between thea and b phases
~see Fig. 4!, we have, on the one hand, continuity of th
normal and shear components of the stress tensor~due to
mechanical equilibrium!,

sxx~x502!5sxx~x501!,

sxz~x502!5sxz~x501!, ~13!

and the same conditions atx5hl. On the other hand, co
herence of the interfaces between lamellas imposes a
tional conditions, viz., continuity of the displacements~up to
a constant!,

ux~x502!5ux~x501!,

uz~x502!5uz~x501!, ~14!

with again identical conditions atx5hl. Equations~13! and
~14! and their counterparts atx5hl constitute two boundary
conditions at each vertical boundary for the stress field in
lamella extending betweenx50 andx5hl. ~There are four
equations but each of them pertains to two lamellas.! The
four boundary conditions at the twox5const boundaries of a
lamella suffice to solve the elastic problem uniquely. The
fore, there is no room left for more boundary conditions. B
in fact, we have, at the boundary towards the liquid,

szz~z5 z̄ !52pl ,

FIG. 4. The flat-interface structure used in the simplest Jacks
Hunt approach.
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sxz~z5 z̄ !50, ~15!

two additional boundary conditions, rendering the probl
overdetermined. Note that this line of reasoning presuppo
different elastic constants in the solid phases. If all ela
coefficients are equal, then the validity of Eqs.~14! implies
that of Eqs.~13! simply by virtue of Hooke’s law~assuming,
as usual, that continuous physical functions are also cont
ously differentiable!. With different sets of elastic constan
in the two phases, we have a situation similar to that
microstructures discussed by Mu¨ller @11#. A solution to the
elastic problem need not exist. That is, the elastic prob
may not have a solution with the boundariesfixed to the
chosen positions. However, a solution to the mathemat
problem given all the discussed boundary conditions d
exist, if we allow the lamella boundaries to adjust th
shape, i.e., if we convert the question to a free-bound
problem. The purpose of the following discussion is th
only to establish that analytically tractablehomogeneous
stress solutionsexist in particular cases.

In fact, we do not needgeneralsolvability to consider a
sensible physical problem. Looking for constant-stress s
tions of Eqs.~14! together with Eqs.~15! we obtain, setting
sxz( z̄)50, the conditions

2pl5szz
0 5

na

12na
sxx

0 1
Ea

12na
2

uzz
0 ,

2pl5szz
0 5

nb

12nb
sxx

0 1
Eb

12nb
2

uzz
0 , ~16!

where the superscript 0 indicates the absence of spatial v
tion inside the lamellas and the subscriptsa and b distin-
guish the elastic constants in the two solid phases. There
no such subscripts on the stresses and onuzz

0 which are equal
in the two phases~in contrast touxx

0 , which may differ!. It is
evident that for different elastic constants in the two mate
als, Eqs.~16! have a unique solution forsxx

0 and uzz
0 , pro-

viding the coefficient determinant does not vanish. That
we just have to choose the right value of the prestresssxx

0 to
ensure the existence of a homogeneous solution on which
can base our analysis@12#. As long asplÞ0, we havesxx

0

Þ2pl ; i.e., the Grinfeld instability is potentially activated
For pl50, on the other hand, we can even have a continu
set of solutions, if we choose the elastic constants such
the coefficient determinant vanishes~which is possible even
for EaÞEb , say!.

Given the fact that there is a solution to the elastic pr
lem, the calculation of its influence on the Gibbs-Thoms
equation~6! becomes very simple. Assxx is homogeneous
throughout the sample and because ofs tt5sxx for a planar
interface, we simply have (s tt2snn)

2/s0
251. Hence, the av-

eraged stress terms are simplyHa andHb, respectively.
Inserting this in the Gibbs-Thomson equation, we get

^z&a5^z&a
JH1 l T

aHa,

^z&b5^z&b
JH1 l T

bHb, ~17!
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where^ &JH is the average without the stress term. Assu
ing equal average undercoolings in front of both phases,
set^z&a5^z&b ~becauseDT52Gz). As has been discusse
earlier, this assumption is not necessary to obtain clo
equations@10#, but it simplifies calculations. We can the
write an implicit equation forh:

h512c`2d1k
l T
bHb2 l T

aHa

l T
a1 l T

b
1

k

~ l T
a1 l T

b!h~12h!

3H 2l

l
P~h!@h l T

b2~12h!l T
a#

1
2

l
@h l T

bd0
bsinqb2~12h!l T

asinqa#J . ~18!

The last term in this equation is small for small undercooli
~implying a small Pe´clet numberl/ l ) and small contact
angles, so that in this limit an explicit formula forh is avail-
able. Using Eq.~18! in Eqs.~17!, we obtain, for the average
undercooling,

^DT~l!&5^DT&minS l

lmin
1

lmin

l D , ~19!

where

lmin5lmin
JH~h!, ~20!

^DT&min5^DT&min
JH1G

l T
al T

b

l T
a1 l T

b
~Ha1Hb!. ~21!

Because on setting]^DT&/]l50 the elastic terms disappea
from the equation forlmin , there seems at first glance to b
no effect of elasticity on the selected wavelength. But tha
not true, becauseh has changed. Expandinglmin abouthJH,
settingh5hJH1Dh, we obtain

lmin5lmin
JH~hJH!F11DhS 2

1

2

P8~hJH!

P~hJH!

1
d0

bsinqb2d0
asinqa

hJHd0
bsinqb1~12hJH!d0

asinqa
D G , ~22!

whereDh'k( l T
bHb2 l T

aHa)/( l T
a1 l T

b).
The first thing to note is that if the elastic constants a

the latent heat per volume are equal in the two phases, el
effects do not influence the wavelength at minimum und
cooling, within the flat-interface approximation. This is wh
we insisted on considering the more general case in spit
the complications concerning the existence of a solution
the elastic problem. The logarithmic derivativeP8(h)/P(h)
of the JH function vanishes forh5 1

2 and diverges forh
→0 or h→1, allowing for a potentially large effect. How
ever, it stays smaller than 50 for 0.04,h,0.96, which
means that it does not provide more than an order of ma
tude in most situations. The second term in the brackets
Eq. ~22! usually is on the order of 1. The sign of the effe
depends on the sign ofDh, i.e., the relative magnitude of th
elastic constants in the two phases.
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If we assume that the difference in Young’s moduli in t
two phases is on the order of 10% of their average@i.e., (1
2nb

2)/2Eb2(12na
2)/2Ea'0.05/Eav#, we find, for typical

values of the material parameters (Te;400 K, a freezing
range miDc;10 K, Li;10 J/cm3, k;1, E5105 N/cm2)
and for h;0.1 that DhP8(h)/P(h)'2
31027 @cm4/N2#s0

2 . This gives a relative wavelengt
change of 1025 for s051 bar and one of 10% fors0
5100 bars. We therefore conclude that this effect is sm
in ordinary experiments but might be accessible in hig
pressure setups, where pressures of 100 bars or more c
be applied.

The next task is then to see what is the order of magnit
of the influence of deviations of the interface shape fr
planarity.

IV. JACKSON-HUNT THEORY
FOR A TRIANGULAR INTERFACE

The simplest nonplanar surface structure accessible t
analytic approach is a triangular surface~see Fig. 5!. To pro-
ceed, we will from now on assume that the elastic consta
are the same in the two phases.

In the absence of volume forces, the two-dimensio
stress tensor can be expressed via an Airy stress functiox.
Setting

sxx5
]2x

]z2
, sxz52

]2x

]z]x
, szz5

]2x

]x2
, ~23!

we automatically satisfy the condition of mechanical equil
rium ( j]s i j /]xj50. Hooke’s law together with the assum
tion of isotropic elastic properties then implies thatx must
obey the biharmonic equationD2x50. We split the Airy
function according tox(x,z)5x (0)(x,z)1x (1)(x,z), where

x~0!~x,z!52
pl

2
x21

s02pl

2
z2, ~24!

x~1!~x,z!5 (
n51

`

~Anz1Bn!eKnzeiK nx1c.c., ~25!

Kn52pn/l, and both terms are solutions to the biharmo
equation separately.

Equation~24! corresponds to a homogeneous stress s
and Eq. ~25! describes the deviation therefrom. Once w
have calculated the coefficientsAn , Bn we are able to com-
pute the stress term in Eq.~6!. Inserting our boundary con
ditions for the stress field into a representation ofsnn and
snt in thexz coordinate sytem, we arrive at an infinite line

FIG. 5. Simplified surface structure.
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system of equations that in principle could be solved for
coefficients. An analytic result can be obtained, if the eq
tions are expanded in terms ofDa/b52ha/b /la/b , where
la5hl and lb5(12h)l are the widths of the lamella
and ha(hb) is the height of the triangle in thea(b) phase
~Fig. 5!. If the expansion is performed up to linear order, o
arrives at

An52s0le2 ipnhDab
n ~h!, Bn50, ~26!

where

Dab
n ~h!5dn,0S 2Da

h

2
1

1

4
Dah21

1

4
Db~12h!2D

1~12dn,0!
1

2p2n2
@Da1Db~21!n

2~Da1Db!cos~phn!#. ~27!

Note that in Eq.~26! we need this definition only forn.0,
where it simplifies to the second term. Using these coe
cients inx and calculating the average of (s tt2snn)

2, we
obtain

^~s tt2snn!
2&a5s0

2F12
1

h
V~h!G , ~28!

^~s tt2snn!
2&b5s0

2F11
1

~12h!
V~h!G , ~29!

where

V~h!516(
n51

`

sin~pnh!Dab
n ~h!. ~30!

To be consistent, we have to compute the average of
diffusion field for the double triangular surface as well.
turns out that the result can be cast into a form that is v
similar to the case of a planar interface. All that has to
done is to replace the Jackson-Hunt functionP(h) by

P~h,Da ,Db!5P~h!1
2

p2(n51

`
sinphn

n

3 (
m51

`
sinphm

m
@Dab

n2m~h!2Dab
n1m~h!#,

~31!

and here all integer values, including zero, can appear in
superscript ofDab

n2m(h). WhereasP(h) is essentially inde-
pendent ofl, the wavelength dependence ofh being weak,
P(h,Da ,Db) does depend on the wavelength via thel de-
pendence of theDa/b . This must be taken into account in th
minimization procedure when the minimum undercooling
determined.

Thus replacingP(h) with P(h,Da ,Db) in Eqs. ~8! and
~9!, we can proceed in a pretty straightforward manner. F
we use an assumption analogous to the equal undercoo
assumption to eliminate the term 1/k(c`1d1h21) from
the formulas. In particular, we assume^z&a2^z&b5 1

2 (ha
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2hb). Next, we write down the total average undercoolin
In minimizing it, we suppose a weakl dependence ofh,
which yields ]P(h,Da ,Db)/]l52P1(h,Da ,Db)/l with
P1(h,Da ,Db)[P(h,Da ,Db)2P(h). We then find that,
surprisingly, the result for the wavelength does not cont
the modified Jackson-Hunt function anymore but just
original one:

lmin
25

l

P~h!H d0
a~12h!sinqa1d0

bh sinqb

1
1

2
~hHb2~12h!Ha!Ṽ~h!J , ~32!

where

Ṽ~h![lV~h!58(
n51

`
sin~phn!

p2n2 Fha

h
1

hb

12h
~21!n

2S ha

h
1

hb

12h D cos~phn!G . ~33!

For comparison with the stress-free case we rewrite this

lmin
25lmin

JH 2~h!S 11
„hHb2~12h!Ha

…Ṽ~h!

2@d0
a~12h!sinqa1d0

bh sinqb#
D ,

~34!

where we have taken the Jackson-Hunt result for the wa
length at the pertinent value ofh. Of course, there is an
additional effect~as in Sec. III! due to the change in th
volume fraction under external stress. The latter is given

Dh5
k

l T
a1 l T

bH ~ l T
bHb2 l T

aHa!1
1

2
~hb2ha!

1S l T
b

12h
2

l T
a

h D2l

l
P1~h,Da ,Db!

1V~h!S l T
b

12h
Hb1

l T
a

h
HaD J . ~35!

In order to get an estimate of the order of magnitude
elastic effects, we note that fors0'1 bar and the materia
parameters considered in Sec. III, we haveHa/b'2

31025. V(h) is on the order of 10, henceṼ(h)'l, if we
take the heightsha/b of the lamellas to be of orderl/10.
Assumingd0

a/b'1023l, we find that the second term in Eq
~34! is on the order of 1% fors051 bar; i.e., an appreciabl
effect may be expected for pressures or tensions in exce
10 bars.

With the same assumptions, we note that the changeh
induced by elastic effects is on the order of 1024 for s0
51 bar and 1022 for s0510 bars, hence negligible in
most cases in comparison with the direct effect given by
~34!. Of course, this also depends on the size ofdlmin

JH /dh,
which we have estimated to be small forh values not too
close to 0 or 1, in Sec. III.

We now consider a few special cases that are espec
transparent.
.

n
e

s

e-

y

f

of

.

lly

If the lamella structure is symmetric under an exchange
the a and b phases, i.e.,h5 1

2 and ha5hb , then we see

immediately from Eq.~33! thatṼ(h)50. Terms with evenn
vanish because of the factor sin(phn); terms with oddn pro-
duce a factor of zero inside the brackets. Therefore, appl
tion of external stress will not alter the wavelength in th
case, except possibly via the change inh induced by Eq.
~35!, which is a much smaller effect. Moreover, if we assum
the thermalproperties of the two phases to be the same,
l T
a5 l T

b , La5Lb , we haveHa5Hb according to Eq.~7! ~be-
cause we took theelastic properties of both phases equ
from the outset of this section!. Therefore, we haveDh50
in this case. The direct effect onl as described by Eq.~34!
is then absent even ifhaÞhb , although there will be a smal
shift in h, if the two phases have different heights.

Another simplification arises, if we choose all the prope
ties of thea andb phases to be equal and setDa5Db[D
but allow forhÞ 1

2 . In particular, this means that we assum
the heights of the lamellas to be proportional to their widt
We can then evaluateV(h) analytically,

V~h!5
8D

p2 (n51

`
sin~pnh!

n2
@11~21!n22 cos~pnh!#

5
8D

p S h ln 21E
0

h
dx lnusin~px!u D , ~36!

and it is easy to show that (2h21)V(h)>0. Therefore, we
have anincreaseof the wavelength in this case.

A discussion of the general case is most easily done
numerical evaluation of Eq.~32! for a few characteristic set
of parameter values and graphical representation of the
sult. This is carried out in Fig. 6. We compare theh depen-
dence of the relative change in wavelength forDa
5Db , Da52Db , andDb52Da . HereDa is set to 1/10 and
the pressure is 25 bars. The diffusion length is taken to
l 5102l and the capillary lengthd051023l. The contact
angles have been chosen asqa/b5arctanDa/b in keeping
with the spirit of the triangular approximation. It is seen th

FIG. 6. The change in wavelengthl as a function of the volume
fraction h for 25 bars. The thick symmetric curve is forDa5Db

50.1. The thick asymmetric curve is forDa50.1 andDb50.2, and
the thin curve is for Da50.1 and Db50.05. Here qa/b

5arctanDa/b is assumed.
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when there is an asymmetry between the lamellas, a decr
of the wavelength can occur, but the magnitude of the ef
is pretty small ifDa'Db .

V. SUMMARY

To conclude, motivated by the fact that the interacti
between the Grinfeld and Mullins-Sekerka instabilities
strong in directional solidification of dilute alloys@7,8#, we
were led to investigate the influence of uniaxial stress
directional solidification of lamellar eutectics.

From the outset, two differences could be expected. F
the basic lamellar structure is not determined by the
instability; so direct visibility of an interaction with the ATG
instability was not likely. Second, since the lamellar spac
is typically an order of magnitude smaller than cell spacin
in dilute alloys, the influence of the ATG instability which a
typical thermal gradients is ‘‘resonant’’ with the MS inst
bility should be expected to be weaker in eutectics.

On the other hand, it is also known that qualitative fe
tures that are present in dilute alloys, such as parity brea
or the appearance of asymmetric cells, invariably turn up
eutectics, too, albeit often via a different mechanism, wh
is a rather fascinating phenomenon by itself. Parity break
for example, can be explained by two-mode coupling in c
lular growth but requires quite a different analytic approa
in the case of eutectics@13#. More basic features, such as th
underlying symmetries, are the same in the two cases.

A similar situation arises here: The mechanism by wh
stress modifies the properties of the system is entirely dif
ent from that of the dilute-alloy case. There it was the co
pling to the MS instability; here it is a coupling tothe asym-
metry between the two solid phases. Uniaxial stress has a
d

ase
ct

n

t,
S

g
s

-
g

n
h
g,
l-
h

h
r-
-

direct effect on the volume fraction of the phases, which
general results in a~small! influence on the wavelength o
the pattern. In addition, it changes the undercooling of
front in a wavelength-dependent manner, provided there
~geometric! difference between thea and b phases. Both
effects were calculated to linear order in the deviationD of
the front shape from planarity. The first effect is present ev
for a planar interface, if the elastic constants of the two so
phases differ, and it has been evaluated for that case as

As expected, appreciable wavelength changes req
stresses that exceed those necessary in dilute alloys b
order of magnitude. So we do not expect elastic effects
strongly affect directional solidification experiments with e
tectics by accident~which might, however, happen fo
dilute-alloy experiments!. Nevertheless, stresses of 25 ba
or so are not too high to be imposed in a controlled exp
ment which then would allow to test this theory.

Another point worth mentioning is that the waveleng
change can be both positive and negative for eutectics~and is
positive most of the time! whereas we have only seen
wavelength decrease with dilute alloys so far~at small pull-
ing velocities, the case considered here!. This makes the ef-
fect somewhat less interesting for material processing p
poses but underlines the basic difference in the mechan
by which stress modifies microstructures in the two cas
Large stresses (.100 bars), however, might be used to e
gineer the volume fraction of the phases—if they can
sustained in an appropriate experimental setup.
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