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Influence of uniaxial stress on the lamellar spacing of eutectics
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Directional solidification of lamellar eutectic structures submitted to uniaxial stress is investigated. In the
spirit of an approximation first used by Jackson and Hunt, we calculate the stress tensor for a two-dimensional
crystal with triangular surface, using a Fourier expansion of the Airy function. The effect of the resulting
change in chemical potential is introduced into the standard model for directional solidification. This calcula-
tion is motivated by an observation, made recertlyCantat, K. Kassner, C. Misbah, and H." Néu-
Krumbhaar, Phys. Rev. B8, 6027 (1998], that the thermal gradient produces similar effects as a strong
gravitational field in the case of dilute-alloy solidification. Therefore, the coupling between the Grinfeld and
the Mullins-Sekerka instabilities becomes strong, as the critical wavelength of the former instability gets
reduced to a value close to that of the latter. Analogously, in the case of eutectics, the characteristic length
scale of the Grinfeld instability should be reduced to a size not extremely far from typical lamellar spacings.
Following Jackson and Hunt, we assume the selected wavelength to be determined by the minimum under-
cooling criterion and compute its shift due to the external stress. In addition, we find that in general the volume
fraction of the two solid phases is changed by uniaxial stress. Implications for experiments on eutectics are
discussed[S1063-651X99)02004-9

PACS numbegps): 81.10.Aj, 05.70.Ln, 81.40.Jj, 81.30.Fb

I. INTRODUCTION that of a planar front. Assuming that the and 8 lamellas
have equal average undercoolings they were able to obtain
A nonhydrostatically strained solid in contact with its an analytic approximation for the average undercooling of
melt or vapor can partially relieve its elastic energy by pro-the interface. They then invoked the hypothesis, which has
ducing an undulated interface. This is the cause of a morphgince become known asinimum undercooling assumption
logical instability giving rise to the evolution of grooves with that theselectedvavelength of the pattern leads to the mini-
a definite spacing under uniaxial stress and, possibly, islan@ium possible value of the undercoolitghich means that
formation, if the stress is biaxial. The instability was first for given undercooling thefastest-growingstructure is se-
predicted by Asaro and Tillef1]. Experimentally, it has lected.
been observed and studied by Torii and Balif&gr Since the
independent rediscovery of the instability by Grinf¢], it
has often been referred to as the Grinfeld or Asaro-Tiller-
Grinfeld instability (ATG). Important contributions leading In describing the problem by a macroscopic continuum
to a broad interest in the instability are due to Noe&t4,5.  model we must introduce fields. These are the temperature,
In directional solidification(Fig. 1), it is known that the the concentrations, and the stress fields. We make some stan-
moving front undergoes, depending on the growth velocitydard simplifying assumptions about the properties of the
another morphological instability, named after Mullins andsytem, believed not to affect its essential physical features.
Sekerka(MS) [6], where the interface develops a cellular These simplifications were justified elsewh§t®]. For the

structure. Duranet al.[7] and Cantaet al. [8] investigated  sake of completeness, we recapitulate them briefly. The ther-
the coupling between these two instabilities for dilute alloys.
They discovered that under favorable circumstances a weak

II. MODEL EQUATIONS

uniaxial stress of the order of 1 bar leads to a dramatic HOT Contact

change in the stability range of the Mullins-Sekerka instabil- \ LIQUID

ity. A schematic representation of one of the most common z - E(X)

. . . T . . . . . 1 URFACE
liquid-solid equilibrium phase diagrams is displayed in Fig. '

2. A dilute alloy means that the concentration of the minor V -
phase is very small. The other situation, in which we are PULLING X

interested here, corresponds to a composition close to the VELOCITY

eutectic one. The growing solid then often forms a parallel
array of the two coexisting phasesand g that grow side by
side. This growth mode is called lamellar eutectic growth.

A seminal theoretical desription of lamellar eutectics has FIG. 1. Schematic setup of a directional solidification experi-
been given by Jackson and Hudt) [9]. Their basic ideais ment. A container with the melt in it is pushed through a thermal
the replacement of the diffusion field in the liquid phase withgradientG with a velocity V.
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FIG. 3. lllustration of a lamellar eutectic. The interface position
' S is z={(x). The pinning angles},,; are also shown.

C : C : C requires boundary conditions for the normal derivatives of

A GG % GG C the concentration fields at the liquid-solid interface. This

. . . . continuity equation reads
FIG. 2. Generic phase diagram of a binary euteclids the yeq

temperaturec the concentration of one component. The regibns Jc [(1—k,)c+ 8]v,
a, andB correspond to one-phase equilibrium states of the liquid, D— :r “« 2)
the solide, and the solid3 phases, respectiveli.+a andL+ 3 N[ erace ([(1=Kg)C+0—1]vy,

are regions of two-phase equilibrium between the liquid and the o ~

solid phases; the actual concentrations of the two phases are givavhere 6= (c.—C,)/Ac is the reduced miscibility gap of the
by the liquidus and solidus linesolid lineg delimiting these re- « phase and *6 that of the B8 phase.v,=[2D/I
gions.c,, c,, andcg denote the equilibrium concentrations of the +Z(x)]nz is the normal velocity of the interface where the
liquid and the two solid phases at the triple or eutectic point. Thenqrmal points from the solid into the liquid.

concentrations for the undercooled case are also displayed. For the stress field we impose mechanical equilibrium

2;daijl9x;=0, which means that on the time scale of the

mal gradientG is assumed constant in the frame of reference;qncentration field, the stress is always relaxed. We assume
moving along with the growing interface. This means thafjinear elasticity and an isotropic solid, so that Hooke's law
thermal diffusion is much faster than chemical diffusion, that

thermal conductivities of all phases are equal, and that latent

heat production can be neglected. Thanks to this approxima- E ( v

. - . . __—alp alB S5 3
tion, the motion of the temperature field is completely decou- TiiT11, / \uij 1-2v, Ukkij | » (€)
pled from that of the concentration field. Temperature is il s

given by position_, which effectively reduces the number ofwhere ojj are the components of the stress tensor apd
fields to be considered by 1. We further suppose the attach=1(4u, 19x;+ du; 19x;) those of the strain tensouyis the

2
ment kinetics at the solid-liquid interface to be fast on thedisplacement vectar E,(Ep) is Young's modulus for the
time scales of all other transport processes. This assumptiog(3) phasev,(v,) the Poisson number.

is legitimate for microscopically rough interfaces. We take The boundary conditions at the solid-liquid interface are
surface tension to be isotropic. In the vicinity of the opera-

ting point in the phase diagram, the slopes of the liquidus opp=hnon=-—p,,
and the solidus line are assumed constant. This leads to
temperature-independent partition coefficients for both on=not=0, (4)

phasesr and 8. The partition coefficientk,, ; are the ratios
of the slopes of the liquidus and solidus lines, respectively
In addition, we restrict ourselves to the so-called one-side

wheren (t) is the normalktangential vector at the interface,
and p, is the pressure in the liquid. These conditions state
model; i.e., we have no diffusion in the solid phases. that we have no shear at the solid-liquid boundary and that
. . . . . ~ the normal component of the stress tensor is continuous.
Jntrogucmg a dimensionless concentration fiede: (¢ That is, we neglect the capillary overpressure present when
—Ce)/Ac, wherec stands for the physical concentration andthe interface is curved. Usually, this is a good approxima-
Ac=cz—c, is the miscibility gap, we can write the equation tion.
of motion in the laboratory framéwhere the sample is There are two further points that have to be taken into

pushed at constant veloci® along the— z direction account. Both result from the requirement of local thermo-
dynamic equilibrium at the interface, due to fast interface

,  24dc kinetics. The first of these is often referred to as the “me-

Vet T EZO- (1) chanical” equilibrium condition for the surface tensions of

the three interfaces meeting at a triple paiakthough it is
In this equation| =2D/V is the diffusion length, wherB is indeed a conditign of thermodyna_mic equjljbrium under par-
the diffusion constant. One boundary condition for the diffu-ficle exchange, i.e., one of chemical equilibriuriihe con-
sion equation takes into account that the concentration fa2Ct anglesd, s (see Fig. 3 should obey
away from the surface has a constant valeg=(C.,
~Co)/AC. In the lateral direction, we assume periodic
boundary conditiong(x,z) =c(x+\,z). Mass conservation Ya1COSY,— 5 COST =0, 5)

YaiSIND o+ yaSiNYs=v,5,



4300 JENS KAPPEY, KLAUS KASSNER, AND CHAOUQI MISBAH PRE 59

where v;; is the surface tension between the phasasdj AZ
(and | designates the liquid phaseThe second condition _
couples the stress to the concentration field. It is a modified z=(
Gibbs-Thomson equation B ‘ o ‘ B ‘ o

4 @ @ (O'tt_o'nn)2

Ea/BC|interface:|WE+d0/BK+H /ﬁ—z nA

T 90 . A X

(e,=—1, €5=1). (6) x=0 o
In this equation,{ is the z coordinate of the liquid-solid FIG. 4. The flat-interface structure used in the simplest Jackson-
interface andk its curvature, taken to be positive where the Hunt approach.
solid is convexl¥? are the thermal lengths, given b§/? )
=m,sAC/G, wherem,(m,) is the absolute value of the P(p)=3 si(nm ) (10)
slope of the liquidus line describing coexistence of phase K =1 (nw)3

a(B) and the liquid.dy=v; To/Lim;Ac are the capillary

lengths (= «,8), whereL,; is the latent heat per unit volume and the segregation coefficiekhas been taken equal in the
and T, the eutectic temperature. The modification is the in-two phases. The averages of the curvature ofdhand 8
clusion of the stress term with lamellas can be obtained without approximation, as they just

o o involve the integration of a derivative,
T1—7v{) oy

H=——F———, i=a,8. (7)
2EmiAcL, P ()= sind, (11
Herein, o is the uniaxial prestress that can be controlled in 7
experiments. A detailed derivation of E@) is given in[8]. 2
<K>B=m8inﬁ’3. (12

11l. JACKSON-HUNT THEORY FOR A FLAT INTERFACE

To average the stress terms, we must, in principle, solve
The first level of approximation in Jackson and Hunt'sthe elastic problem for a flat lamellar structure. Innocent as
approach consisted in replacing the actual diffusion field inhis problem may look, it is not all that trivial. Nevertheless,
Eqg. (6) with that of a planar lamellar structure sitting at the the final averaging procedure will turn out to be independent
average position of the solidification front. Without the stressof the subtleties that we will now discuss briefly.
term, Eq.(6) would then become a pair of second-order dif- At each lamella boundary between theand 8 phases
ferential equations with boundary conditions fO”OWing from (see F|g 4, we have, on the one hand, Continuity of the

Eq. (5). The solution of these equations with the supplemenngrmal and shear components of the stress tefthoe to
tary condition that the two solutions match at the triple pointmechanical equilibrium

gives the interface shape and the volume fractjoof the «

phase. Since these equations are nonlinear, they cannot eas- Tux(X=07) =0 (x=0"),
ily be solved analytically. Hence Jackson and Hunt invoked
the condition of equal average undercooling of the two solid- Oy (Xx=07)=0,,(x=0"), (13

liquid interfaces, which fixes the free parameteand allows

one to obtain an analytic relation between the average undeand the same conditions &t »\. On the other hand, co-
cooling and the wavelength. The second step—solution foherence of the interfaces between lamellas imposes addi-
the interface shape—can then be done numerically, if detional conditions, viz., continuity of the displacemefuip to

sired. a constant
The main modification in our case is that we have an
additional term in Eq(6) involving the stress distribution at U (x=07)=uy(x=0"),
the interface. In the spirit of Jackson and Hunt, we compute
this expression for a flat interface first. Then the problem U, (Xx=07)=u,(x=0"), (19
becomes very similar to JH's original approach with the dif-
fusion field replaced by|,— Ea/BHa/'B(a'tt— o)l o, with again identical conditions at= »\. Equationg13) and
Averaging the diffusion field obtained by solving the von (14) and their counterparts &t= »\ constitute two boundary
Neumann problenfl), (2) for a flat interface, we have conditions at each vertical boundary for the stress field in the

lamella extending between=0 andx= n\. (There are four

1 2\ equations but each of them pertains to two lamellase
(Ca=g(Catotn=1)+ PRkl ®  four boundary conditions at the two= const boundaries of
lamella suffice to solve the elastic problem uniquely. There-
1 2\ fore, there is no room left for more boundary conditions. But
(C)p=p(Catotn—1)— mp(m, (9 in fact, we have, at the boundary towards the liquid,

where o Az=0)=—p|,
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—71=0 15  Wwhere( )’" is the average without the stress term. Assum-
oy 2=¢) ) (15 . . .
ing equal average undercoolings in front of both phases, we

two additional boundary conditions, rendering the problemSet{¢)«=({)s (becausdT=—G{). As has been discussed
overdetermined. Note that this line of reasoning presupposélier, this assumption is not necessary to obtain closed
different elastic constants in the solid phases. If all elasti€duations[10], but it simplifies calculations. We can then
coefficients are equal, then the validity of Eq&4) implies  Write an implicit equation for:
that of Egs(13) simply by virtue of Hooke’s lawiassuming,
as usual, that continuous physical functions are also continu-
ously differentiable With different sets of elastic constants
in the two phases, we have a situation similar to that in
microstructures discussed by Nar [11]. A solution to the P .
: i i i X{—P(pylr—(1-n)l7]
elastic problem need not exist. That is, the elastic problem [ T T
may not have a solution with the boundariesed to the
chosen positions. However, a solution to the mathematical
problem given all the discussed boundary conditions does
exist, if we allow the lamella boundaries to adjust their
shape, i.e., if we convert the question to a free-boundaryhe last term in this equation is small for small undercooling
problem. The purpose of the following discussion is then(implying a small Pelet numbern/I) and small contact
only to establish that analytically tractablomogeneous- angles, so that in this limit an explicit formula foris avail-
stress solutiongxist in particular cases. able. Using Eq(18) in Egs.(17), we obtain, for the averaged
In fact, we do not needeneralsolvability to consider a undercooling,
sensible physical problem. Looking for constant-stress solu- \ \
tlons_of Eqgs.(14) together with Egs(15) we obtain, setting <AT()\)>=<AT>mm( mm)' (19)

IBHA—15H k

+
15415 (519 7(1-7)

n=1-c,—6+k

2 . .
+K[r;l?dgsmﬁﬁ—(l—n)l%smﬁa]]. (19

—+
o,£)=0, the conditions Amin A
where
—p=0'0= Ya ol + Ea ul
R SR T Nmin=Nemin”"'(7), (20
v E (AT min=(AT) i’ "+ G i (H*+HP). (21
=S ot Ty U, (16) AR M a8 '
1-vg 1_,,[23 THIT

_ o _ _Because on setting{AT)/d\ =0 the elastic terms disappear
where the superscript 0 indicates the absence of spatial varig,m the equation foh ,,, there seems at first glance to be

tion inside the lamellas and the subscriptsand 8 distin- g effect of elasticity on the selected wavelength. But that is

guish the elastic constants in the two solid phases. There afgy trye because has changed. Expanding,;, aboutz’H

no such subscripts on the stresses andgmvhich are equal setting = 7"+ A », we obtain

in the two phaseéin contrast tau?,, which may diffey. It is

evident that for different elastic constants in the two materi- 1P (5"
; ; 0 0 Ain=Ami (7" 1+Ap| — 5 ——=
als, Egs.(16) have a unique solution fory, andu,,, pro- min= Amin (7 T3 P(7)
viding the coefficient determinant does not vanish. That is, 7
we just have to choose the right value of the prestﬁéj§stq dgsinﬁﬁ—dgsinﬁa
ensure the existence of a homogeneous solution on which we + s TR . (22
can base our analysf42]. As long asp,#0, we haves?, 7 " dgsindg+(1—77")dgsind,

# —p,; i.e., the Grinfeld instability is potentially activated. BB aryan /(1@ 1B
Forp,=0, on the other hand, we can even have a continuou¥NereA 7~k(IfH"=13H%)/(I7+17). ,
set of solutions, if we choose the elastic constants such that 1N€ first thing to note is that if the elastic constants and

the coefficient determinant vanisheshich is possible even e latent heat per volume are equal in the two phases, elastic
for E,#Eg, say effects do not influence the wavelength at minimum under-
a 1 *

Given the fact that there is a solution to the elastic prob_cooling, within the flat-interface approximation. This is why

lem, the calculation of its influence on the Gibbs-Thomson'Ve insisted on considering the more general case in spite of

: ; ; the complications concerning the existence of a solution to
equation(6) becomes very simple. As,, is homogeneous - N e
throughout the sample and becauseré(fxz o, fOT a planar the elastic problem. The Ioganthmlc1 derivatiRé( 5)/P(7)
interface, we simply haveds(;— o) 2/0(2)= 1. Hence, the av-

of the JH function vanishes fop=3 and diverges fory
eraged stress terms are simply andH#, respectively. —0 or n—1, allowing for a potentially large effect. How-
Inserting this in the Gibbs-Thomson equation, we get

ever, it stays smaller than 50 for 084<0.96, which
means that it does not provide more than an order of magni-
tude in most situations. The second term in the brackets of
Eqg. (22) usually is on the order of 1. The sign of the effect
L Bs depends on the sign d&f 5, i.e., the relative magnitude of the
(0)p=(L)p +1FH", (17 elastic constants in the two phases.

(D a=(0)u"+17H,
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system of equations that in principle could be solved for the
coefficients. An analytic result can be obtained, if the equa-
tions are expanded in terms af,, ;=2h,z/\, 5, Where
No,=n\ and Ag=(1—7n)\ are the widths of the lamellas
andh,(hp) is the height of the triangle in the(B) phase
(Fig. 5. If the expansion is performed up to linear order, one
arrives at

— —imnpAN —
FIG. 5. Simplified surface structure. An Tohe Aap(n),  Bn=0, (26)

If we assume that the difference in Young’s moduli in theWhere
two phases is on the order of 10% of their averfige, (1 N , 1 )
—15)I2E 53— (1- v2)/2E,,~0.05E,,], we find, for typical Ap(m)=6nd —Aaz + 4Aan +785(1=7)
values of the material parameter§.(-400 K, a freezing

range mAc~10 K, L;~10 J/cni, k~1, E=10° N/cn?) 1 .

and for 5~0.1  that AnP'(9)/P(5)~2 (17005 5 5l Aat Ap(— 1)

X 1077 [emf/N?]oj. This gives a relative wavelength

change of 10° for o,=1 bar and one of 10% forr, —(A,+Apg)cogmyn)]. (27)

=100 bars. We therefore conclude that this effect is small
in ordinary experiments but might be accessible in high-Note that in Eq(26) we need this definition only fon>0,
pressure setups, where pressures of 100 bars or more couMere it simplifies to the second term. Using these coefﬂ-
be applied. cients iny and calculating the average ofr§— o2,

The next task is then to see what is the order of magnitud@btain
of the influence of deviations of the interface shape from

planarity. (04— Tan) =05 1= %Q(n)}, (28)
IV. JACKSON-HUNT THEORY 1
FOR A TRIANGULAR INTERFACE <(0n_ U'nn)2>,8: U'S (1 - —— 77)} (29)
The simplest nonplanar surface structure accessible to an
analytic approach is a triangular surfasee Fig. 5. To pro-  where
ceed, we will from now on assume that the elastic constants .
are the same in the two phases. i N
In the absence of volume forces, the two-dimensional 9(77):1621 sin(mn7)A (7). (30
stress tensor can be expressed via an Airy stress fungtion
Setting To be consistent, we have to compute the average of the
diffusion field for the double triangular surface as well. It
x x % turns out that the result can be cast into a form that is very
Do 2 TxT T gax T g2 23 similar to the case of a planar interface. All that has to be

done is to replace the Jackson-Hunt functi®fy) by

we automatically satisfy the condition of mechanical equilib- o .
rium =;do;; /9x;= 0. Hooke’s law together with the assump- P(7.A, A )IP(WHEE sinaran

tion of isotropic elastic properties then implies thamust ’ A mn=1 N
obey the biharmonic equation?y=0. We split the Airy .
function according toy(x,z) = x(9(x,2) + xM(x,z), where sinrpgm
X 2, — AL () = AR,
P 00— P
X0x,2)= - Sx+ ——2, (24) (31)

and here all integer values, including zero, can appear in the
(25) superscript ofA" (77) WhereasP(#) is essentially inde-
pendent ofx, the wavelength dependence pfbeing weak,
P(7,A,,Ap) does depend on the wavelength via thele-
Ky=2mn/\, and both terms are solutions to the biharmonicpendence of thé ,, ;. This must be taken into account in the
equation separately. minimization procedure when the minimum undercooling is
Equation(24) corresponds to a homogeneous stress statdetermined.
and Eq.(25) describes the deviation therefrom. Once we Thus replacingP(#) with P(#%,A,,A) in Egs.(8) and
have calculated the coefficiemds,, B, we are able to com- (9), we can proceed in a pretty straightforward manner. First
pute the stress term in E¢G). Inserting our boundary con- we use an assumption analogous to the equal undercooling
ditions for the stress field into a representationogf, and  assumption to eliminate the termk{¢..+ 6+ »—1) from
oy in thexz coordinate sytem, we arrive at an infinite linear the formulas. In particular, we assungé),—(¢)s=73(h,

Y P (x,2)= Z (A,z+B,)eknZekntc.c.,
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—hg). Next, we write down the total average undercooling.

In minimizing it, we suppose a weak dependence of,
which yields dP(7,A,,Ag)/dN=—P1(7,A,,Ap)/\ with
Pi(n,A,,A5)=P(7,A,,A5)—P(7n). We then find that,

surprisingly, the result for the wavelength does not contain
the modified Jackson-Hunt function anymore but just the

original one:
Amin2=m d§(1— n)sind,+djnsind,
1 ~
+5 (R = (=) H)Q () [, (32
where
- - sinf(myn)[h,  hg
Q(n)=\Q(7n)=8 —+ —1)"
(m=NQ(7) =82, SR Iy )
h, hg 23
- 7+m COE{ﬂT?‘]n) . (33
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FIG. 6. The change in wavelengthas a function of the volume
fraction 7 for 25 bars. The thick symmetric curve is far,=A,4
=0.1. The thick asymmetric curve is fdr,=0.1 andA ;= 0.2, and
the thin curve is for A,=0.1 and A;=0.05. Here 34,4
=arctan 4 is assumed.

If the lamella structure is symmetric under an exchange of

the « and B phases, i.e.p=3 and h,=hg, then we see

For comparison with the stress-free case we rewrite this agmmediately from Eq(33) that{}(#») =0. Terms with evem

(HP— (1= HHQ(7)
2[d§(1— p)sin®,+dfpsind 4]

(34

7\min2: )\ﬂ"li;lnz( 7])( 1+

where we have taken the Jackson-Hunt result for the wav
length at the pertinent value af. Of course, there is an
additional effect(as in Sec. Il due to the change in the

volume fraction under external stress. The latter is given b

1
A= [(I’%HB—I?H”HE(hB—ha)

I§+14

12 1g\2xn
O )( i H#? I{‘EH )] (35
+ +—H*| .

1=y U]

In order to get an estimate of the order of magnitude of

elastic effects, we note that fer,~1 bar and the material
parameters considered in Sec. Ill, we hat/f~2
x107°. Q(7) is on the order of 10, hend@(7)~N\, if we
take the height$1*/# of the lamellas to be of ordex/10.
Assumingdg’#~1073\, we find that the second term in Eq.
(34) is on the order of 1% foog=1 bar; i.e., an appreciable

vanish because of the factor sinfn); terms with oddh pro-
duce a factor of zero inside the brackets. Therefore, applica-
tion of external stress will not alter the wavelength in this
case, except possibly via the changesninduced by Eq.
(35), which is a much smaller effect. Moreover, if we assume
the thermalproperties of the two phases to be the same, i.e.,

Ei'$:|4¥, L,=Lgs, we haveH“= H# according to Eq(7) (be-

cause we took thelastic properties of both phases equal

Jrom the outset of this sectigpnTherefore, we hava =0
I

n this case. The direct effect onas described by Eq34)
is then absent even fif,# h;, although there will be a small
shift in #», if the two phases have different heights.

Another simplification arises, if we choose all the proper-
ties of thea and B8 phases to be equal and sef=A;=A
but allow for »+# 3. In particular, this means that we assume
the heights of the lamellas to be proportional to their widths.
We can then evaluat@(#) analytically,

8A .
Q==

aTn=1

M[l‘f-(_l)n_z cogmn)]
n

_8A ” .
_7(77|n2+f0 dxln|sm(77x)|), (36)

and it is easy to show that ¢2-1){(#)=0. Therefore, we

effect may be expected for pressures or tensions in excess héve anincreaseof the wavelength in this case.

10 bars.

With the same assumptions, we note that the changg of
induced by elastic effects is on the order of f0for o
=1 bar and 102 for o,=10 bars, hence negligible in

A discussion of the general case is most easily done by
numerical evaluation of Eq32) for a few characteristic sets
of parameter values and graphical representation of the re-
sult. This is carried out in Fig. 6. We compare thedepen-

most cases in comparison with the direct effect given by Eqdence of the relative change in wavelength fdr,

(34). Of course, this also depends on the sizalnf!/d7,
which we have estimated to be small fgrvalues not too
close to 0 or 1, in Sec. lll.

=Ag, Ay=2A4, andAgz=2A,. HereA , is set to 1/10 and
the pressure is 25 bars. The diffusion length is taken to be
|=10°\ and the capillary lengttd,=10"3\. The contact

We now consider a few special cases that are especiallgngles have been chosen ég,;=arctamd,; in keeping

transparent.

with the spirit of the triangular approximation. It is seen that
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when there is an asymmetry between the lamellas, a decreadigect effect on the volume fraction of the phases, which in
of the wavelength can occur, but the magnitude of the effectjeneral results in &mall) influence on the wavelength of

is pretty small ifA ,~Ag. the pattern. In addition, it changes the undercooling of the
front in a wavelength-dependent manner, provided there is a
V. SUMMARY (geometrig difference between the and 8 phases. Both

) ] _effects were calculated to linear order in the deviatiof

To conclude, motivated by the fact that the interactionihe front shape from planarity. The first effect is present even
between the Grinfeld and Mullins-Sekerka instabilities isfor  planar interface, if the elastic constants of the two solid
strong in directional solidification of dilute alloyls,8], we  phases differ, and it has been evaluated for that case as well.
were led to investigate the influence of uniaxial stress in  Ag expected, appreciable wavelength changes require
directional solidification of lamellar eutectics. _ stresses that exceed those necessary in dilute alloys by an

From the outset, two differences could be expected. Firslprder of magnitude. So we do not expect elastic effects to
the basic lamellar structure is not determined by the MStrongly affect directional solidification experiments with eu-
instability; so direct visibility of an interaction with the ATG tectics by accident(which might, however, happen for
instability was not likely. Second, since the lamellar spacinggjjyte-alloy experiments Nevertheless, stresses of 25 bars
is typically an order of magnitude smaller than cell spacings,r so are not too high to be imposed in a controlled experi-
in dilute alloys, the influence of the ATG instability which at ent which then would allow to test this theory.
typical thermal gradients is “resonant” with the MS insta-  Another point worth mentioning is that the wavelength
bility should be expected to be weaker in eutectics. change can be both positive and negative for eutetiies is

On the other hand, it is also known that qualitative fea-yositive most of the timewhereas we have only seen a
tures that are present in dilute alloys, such as parity breakingayelength decrease with dilute alloys so far small pull-
or the appearance of asymmetric cells, invariably turn up iNng velocities, the case considered hefEnis makes the ef-
eutectics, too, albeit often via a different mechanism, whictyect somewnhat less interesting for material processing pur-
is a rather fascinating phenomenon by itself. Parity breakingposes but underlines the basic difference in the mechanisms
for example, can be explained by two-mode coupling in celyy which stress modifies microstructures in the two cases.
lular growth but requires quite a different analytic approachy rge stresses$100 bars), however, might be used to en-
in the case of eutecti¢d.3]. More basic features, such as the gineer the volume fraction of the phases—if they can be
underlying symmetries, are the same in the two cases.  gystained in an appropriate experimental setup.

A similar situation arises here: The mechanism by which
stress modifies the properties of the system is entirely differ-
ent from that of the dilute-alloy case. There it was the cou-
pling to the MS instability; here it is a coupling tbe asym- This work was supported by PROCOPE Grant No.
metry between the two solid phasésniaxial stress has a 9619897 in the framework of a French-German cooperation.
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